31

319. Data is all other types of communication that the device **300** is capable of performing within the constraints of the wireless network **319**.

In the instance of voice communications, voice transmissions that originate from the communication device 300 enter 5 the device 300 though a microphone 336. The microphone 336 communicates the signals to the microprocessor 338 for further conditioning and processing. The microprocessor 338 sends the signals to the DSP 320 which controls the transmitter 314 and provides the correct signals to the transmitter 314. 10 Then, the transmitter 314 sends the signals to the antenna 318, which emits the signals to be detected by a communication network 319. Likewise, when the receiver 312 obtains a signal from the receiving antenna 316 that is a voice signal, it is transmitted to the DSP 320 which further sends the signal to 15 the microprocessor 338. Then, the microprocessor 338 provides a signal to the speaker 334 of the device 300 and the user can hear the voice communication that has been received. The device 300 in a preferred embodiment is enabled to allow for full duplex voice transmission.

In another embodiment, the voice transmission may be received by the communication device 300 and translated as text to be shown on the display screen 322 of the communication device 300. The communication device 300 is also capable of retrieving messages from a voice messaging service operated by the communication network operator. In a preferred embodiment, the device 300 displays information in relation to the voice message, such as the number of voice messages or an indication that a new voice message is present on the operating system.

In a preferred embodiment, the display 322 of the communication device 300 provides an indication about the identity of an incoming call, duration of the voice communication, telephone number of the communication device, call history, and other related information. It should be appreciated that the above described embodiments are given as examples only and one skilled in the art may effect alterations, modifications and variations to the particular embodiments without departing from the scope of the application.

As stated above, the communication device 300 and communication network 319 can be enabled to transmit, receive and process data. Several different types of data exist and some of these types of data will be described in further detail. One type of data communication that occurs over the communication network 319 includes electronic mail (e-mail) 45 messages. Typically an e-mail is text based, but can also include other types of data such as picture files, attachments and html. While these are given as examples, other types of messages are considered within the scope of this disclosure as well.

When the e-mail originates from a source outside of the device and is communicated to the device 300, it is first received by the receiving antenna 316 and then transmitted to the receiver 312. From the receiver 312, the e-mail message is further processed by the DSP 320, and it then reaches the 55 microprocessor 338. The microprocessor 338 executes instructions as indicated from the relevant programming instructions to display, store or process the e-mail message as directed by the program. In a similar manner, once an e-mail message has been properly processed by the microprocessor 60 338 for transmission to the communication network 319, it is first sent to the DSP 320, which further transmits the e-mail message to the transmitter 314. The transmitter 314 processes the e-mail message and transmits it to the transmission antenna 318, which broadcasts a signal to be received by a 65 communication network 319. While the above has been described generally, those skilled in this art will appreciate

32

those modifications which are necessary to enable the communication device 300 to properly transmit the e-mail message over a given communication network 319.

Furthermore, the e-mail message may instead be transmitted from the device 300 via a serial port 330, another communication port 340, or other wireless communication ports 340. The user of the device 300 can generate a message to be sent using the keyboard 332 and/or auxiliary I/O 328, and the associated application to generate the e-mail message. Once the e-mail message is generated, the user may execute a send command which directs the e-mail message from the communication device 300 to the communication network 319. In an exemplary embodiment, a keyboard 332, preferably an alphanumeric keyboard, is used to compose the e-mail message. In a preferred embodiment, an auxiliary I/O device 328 is used in addition to the keyboard 332.

While the above has been described in relation to e-mail messages, one skilled in the art could easily modify the procedure to function with other types of data such as SMS text messages, internet websites, videos, instant messages, programs and ringtones. Once the data is received by the microprocessor 338, the data is placed appropriately within the operating system of the device 300. This might involve presenting a message on the display 322 which indicates the data has been received or storing it in the appropriate memory 324 on the device 300. For example, a downloaded application such as a game will be placed into a suitable place in the flash memory 324 of the device 300. The operating system of the device 300 will also allow for appropriate access to the new application as downloaded.

Exemplary embodiments have been described hereinabove regarding handheld electronic devices 300 and wireless handheld communication devices 300 as well as the communication networks within which they cooperate. It should be appreciated, however, that a focus of the present disclosure is the enablement of restricting the operation of camera on a handheld communication device by use of selective enablement and disablement devices.

What is claimed is:

- 1. A handheld communication device capable of transmitting and receiving at least voice and text communication, said device comprising:
 - a body assembly having a front face arranged to be directed toward an operator of the device when held in a text communicating orientation;
 - a display screen and a text-input keyboard each being exposed at the front face of said body assembly, said keyboard comprising a plurality of keys that include a set of alphabetic keys with which QWERTY-arranged alphabetic characters are associated;
 - an integrated camera assembly configured for taking photographs and said communication device enabled to wirelessly communicate photographs taken with said camera assembly to a remote receiver, said camera assembly including a photo-initiating actuator having an actuated position and an unactuated position and a selective disablement device; and
 - said selective disablement device comprises a removable pin that when inserted into a pin-receiver on said device prevents said photo-initiating actuator from moving from said unactuated position to said actuated position.
- 2. The device as recited in claim 1, wherein said camera assembly comprises a selective enablement device that in an enabled mode activates said photo-initiating actuator thereby permitting an operator to take photographs.
- 3. The device as recited in claim 2, wherein said selective enablement device further comprises a disabled mode in